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Efficient decoupling schemes with bounded controls

based on “Eulerian” orthogonal arrays
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The task of decoupling, i.e., removing unwanted interactions in a system Hamiltonian and/or
couplings with an environment (decoherence), plays an important role in controlling quantum sys-
tems. There are many efficient decoupling schemes based on combinatorial concepts like orthogonal
arrays, difference schemes and Hadamard matrices. So far these (combinatorial) decoupling schemes
have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltoni-
ans (bang-bang controls). To overcome the shortcomings of bang-bang control Viola and Knill

proposed a method called “Eulerian decoupling” that allows the use of bounded-strength controls
for decoupling. However, their method was not directly designed to take advantage of the composite
structure of multipartite quantum systems. In this paper we define a combinatorial structure called
an Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian
cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure
gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be applied
to composite quantum systems with few body Hamiltonians and special couplings with the environ-
ment. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters
in order to obtain efficient decoupling schemes.

PACS numbers: 03.67.Lx, 03.65.Fd, 03.67.-a

I. INTRODUCTION

An important task in quantum information theory
consists in selectively removing unwanted contributions
of the system Hamiltonian and/or switching off cou-
plings of the quantum system to an uncontrollable
environment (the later being responsible for decoher-
ence). This task is usually called decoupling (see e.g.
[VL98, VKL99, VLK99, Zan99] and e.g. [JK99, SM01,
LCYY00, WRJB02, Leu02] for schemes using combi-
natorial concepts). More generally, one is also inter-
ested in effectively changing the system Hamiltonian
in order to simulate some desired Hamiltonian; this is
usually referred to as simulating Hamiltonians (see e.g.
[WJB02, DNBT02, WRJB02, BCL+02]). In this pa-
per we will concentrate on designing efficient decoupling
schemes.

Methods of dynamical decoupling and also simulat-
ing Hamiltonians derive their basic physical intuition
from coherent averaging techniques in high-resolution nu-
clear magnetic resonance (NMR) spectroscopy [WHH68,
EBW87]. A decoupling scheme is understood as a con-
trol protocol which relies on the repeated application of
controls drawn from a finite set in order to change effec-
tively the natural time evolution to the desired evolution.
Many efficient decoupling schemes can be designed with
the help of combinatorial concepts like e.g. Hadamard
matrices, difference schemes and orthogonal arrays. The
entries of these structures describe how to choose the con-
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trols. The reason why it is possible to use these combina-
torial objects is the special structure of the system Hamil-
tonians (pair-interactions or more generally few body
Hamiltonians). So far all these (combinatorial) schemes
relied on the ability to effect sequences of instantaneous,
arbitrarily strong controls Hamiltonians (bang-bang con-
trols). Because of the requirement of bang-bang controls
such schemes are unrealistic in many situations. To over-
come the shortcomings of bang-bang decoupling Viola

and Knill proposed a general method (called Eulerian
decoupling) for implementing decoupling with bounded
controls (i.e., continuously modulated bounded-strength
control Hamiltonians) [VK02, Vio04]. This method offers
many advantageous over bang-bang decoupling. How-
ever, their method was not directly designed to make use
of the special structure of few body Hamiltonians to re-
duce the complexity of decoupling.

We show how to incorporate some of the above com-
binatorial methods (that were used so far only in the
bang-bang formulation) into the method by Viola and

Knill in order to obtain efficient decoupling schemes
with bounded controls. Our schemes can be applied to
few body Hamiltonians and special couplings with an
environment. Our schemes rely on a combinatorial ob-
ject (which we call) an Eulerian orthogonal array. We
show how to construct these objects with good parame-
ters from error correcting codes.

The paper is organized as follows. In section 2 we
describe the principles of dynamical decoupling. We de-
scribe briefly the so-called first-order approximation that
is the basis for all decoupling schemes. In section 3 we
recall how to construct decoupling schemes with bang-
bang and bounded strength controls. The method using
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bounded strength control is Viola and Knill’s Eule-
rian decoupling. Here no special structure of the quan-
tum system is assumed. Then in section 4 we consider
quantum systems consisting of coupled qudits. We first
recall in subsection 4.1 how to construct efficient decou-
pling schemes with bang-bang controls with the help of
orthogonal arrays. Efficiency means that the number of
necessary pulses grows polynomially with the number of
qudits. In subsection 4.2 we show how to merge the con-
cept of orthogonal arrays with the idea of Eulerian de-
coupling in order to obtain efficient decoupling schemes
with bounded controls. Our method is based on a com-
binatorial structure called Eulerian orthogonal array. In
sections 5 we show how to construct Eulerian orthogonal
arrays with good parameters.

II. PRINCIPLES OF DYNAMICAL

DECOUPLING

A decoupling scheme is understood as a control pro-
tocol which relies on the repeated application of controls
drawn from a finite set in order to change effectively the
natural time evolution to the desired evolution. We refer
the reader to [VK02, Vio04] for a more detailed descrip-
tion. In the following we give a brief introduction based
on the above articles.

The joint evolution of the target system S in interac-
tion with the environment E is described by a total drift
Hamiltonian of the form

H = HS ⊗ 1E + 1S ⊗ HE + HSE , HSE =
∑

a

Sa ⊗ Ea ,

(1)
where HS and HE characterize the isolated dynamics of
the system and the environment, respectively, and the
interaction term HSE is responsible for introducing un-
wanted decoherence effects and dissipation effects in the
reduced dynamics of S alone. Without loss of general-
ity we will always choose the operators Sa and HS to be
traceless.

The idea behind dynamical decoupling is to add a spe-
cially designed controller, described by a time-dependent
control Hamiltonian Hc(t) acting on only the target sys-
tem S, in such a way that the resulting controlled dynam-
ics is described by an effective Hamiltonian Heff which no
longer contains any coupling terms between S and E, i.e.,

Heff = H̃S ⊗ 1E + 1S ⊗ HE , (2)

for an appropriate, possibly modified, system Hamilto-
nian H̃S . In this paper we will be interested in the case
that H̃S = 0.

Decoupling protocols are most conveniently con-
structed by directly looking at the control propagator
associated to Hc(t)

Uc(t) = T exp

{

−i

∫ t

0

Hc(τ)dτ

}

, (3)

where T denotes the time ordering.
Decoupling is based on the so-called first order de-

coupling. The control actions are always cyclic, i.e.,
Uc(t + Tc) = Uc(t) for some cycle time Tc and for all
t. The stroboscopic dynamics U(tM ) with tM = MTc

and M ∈ N may be described by a propagator

U(tM ) = exp(−iH̄tM ) (4)

for a time-independent effective Hamiltonian Heff . If, in
addition, Tc is sufficiently short, then the effective Hamil-
tonian is accurately represented by the following lowest-
order Hamiltonian

H̄ =
1

Tc

∫ Tc

0

U †
c (t)HUc(t) dτ . (5)

While higher-order terms can be systematically evalu-
ated, the approximation in (5) becomes more and more
exact as the fast control limit Tc → 0 is approached.
First-order decoupling is based on this approximation.

Having introduced the framework of decoupling we
address the problem of designing efficient decoupling
schemes with first bang-bang and then bounded-strength
controls for general Hamiltonians and couplings with the
environment.

III. DECOUPLING SCHEMES

In this section do not assume any special structure
of the target system S, the Hamiltonian HS , and the
coupling to the environment given by Sa’s. We first
discuss how to realize decoupling with controls of un-
bounded strength (bang-bang) and then with bounded
control (Eulerian decoupling). The presentation is based
on [VK02].

A. Bang-bang control

The time-average in (5) can be expressed directly as an
average over a group in the following simple bang-bang
decoupling setting. Let G be a discrete group of order
|G| acting on the Hilbert space of the target system HS

via a faithful, unitary, projective representation,

ρ :

{

G → U(HS)
g 7→ Ug := ρ(g)

, (6)

where U(HS) denotes the group of unitary matrices act-
ing on HS . Let λ ∈ N and λ > 0.

A decoupling scheme using Ug’s as control operations
is specified by a sequence (g1, g2, . . . , gN) with N := λ|G|
and entries from G. The number N is called the length
of the decoupling scheme. The entries gj ’s specify the
control propagator Uc(t) over each of the λ|G| equally
long subintervals. A control cycle is defined by

Uc ((j − 1)∆ + τ) = Ugj
, τ ∈ [0, ∆) , (7)
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with Tc = λ|G|∆ for some ∆ > 0, and j = 1, . . . , N .
If all group elements appear exactly λ times in the list

(g1, . . . , gN) then the resulting control action corresponds
to extracting the G-invariant component of X . We have

1

N

N
∑

j=1

U †
gj

XUgj
=

λ

N

∑

g∈G

U †
gXUg = ΠG(X) ,

where

ΠG(X) =
1

|G|

∑

g∈G

U †
gXUg . (8)

Note that if the representation ρ in (6) is irreducible than
we have ΠG(X) = tr(X)/d 1d for all X , where d is the
dimension of HS .

An example for such an irreducible, unitary, projec-
tive representation is given in the following. The discrete
Fourier transform of length d ∈ N is the unitary transfor-

mation defined by DFTd := 1√
d

∑d−1
k,ℓ=0 ωk·ℓ|k〉〈ℓ|, where

ω denotes the primitive d-th root of unity e2πi/d. Next,

define operators S :=
∑d−1

k=0 |k〉〈k + 1|, where the indices

are reduced modulo d, and T := DFT†
d · S · DFTd =

∑d−1
k=0 ωk|k〉〈k|. Then the map

ρ :

{

Zd × Zd → U(d)
(a, b) 7→ SaT b (9)

is an irreducible, unitary, projective representation. Note
that for d = 2 one obtains 1, σx, σy, σz , where the σ’s are
the Pauli matrices.

Now it clear that we can remove the couplings with the
environment and switch off the natural time evolution
of the quantum system by performing the control opera-
tions according to (7) and the representation in (9). This
is because ΠG(Sa) = 0 for all a and ΠG(HS) = 0. How-
ever, this method has the following disadvantage that
makes it unrealistic form in many situations. Accord-
ing to the rule in (7) the control propagator Uc(t) jumps
from Ugj−1

to Ugj
= (Ugj

U †
gj−1

)Ugj
through the applica-

tion of an arbitrarily strong, instantaneous kick at the
jth endpoint tj = j∆, realizing the bang-bang pulse

Usj
= Ugj

U †
gj−1

with sj := gjg
−1
j−1 (equality is under-

stood here up to a phase factor). In the next section we
describe how to avoid such bang-bang controls.

B. Eulerian decoupling

As already mentioned in the introduction the require-
ments for bang-bang control are highly unrealistic. Vi-

ola and Knill proposed a method called Eulerian de-
coupling [VK02] that avoids the use of such bang-bang
pulses. In Eulerian decoupling the control propagator
Uc(t) is varied smoothly from Ugj−1

to Ugj
by a control

action distributed along the whole jth subinterval.
Let S be a generating set for G, i.e., any element of

G can be written as a product of elements of S. The

Cayley graph Γ(G, S) of G with respect to S is a directed
graph whose vertices are labeled by the group elements
and whose edges are labeled by the generators. More
precisely, the vertex g is joined to the vertex h if and
only if gh−1 = s for some s ∈ S, i.e., g = sh.

It is assumed that we have the ability to physically
implement the generators s ∈ S, i.e., to implement the
unitaries Us by the application of some suitably chosen
control Hamiltonians hs(t) over ∆:

Us = us(∆) (10)

where

us(δ) = T

{

exp
(

− i

∫ δ

0

hs(τ)dτ
)

}

(11)

for δ ∈ [0, ∆]. The choice of the control Hamiltonians
hs(t) is not unique. This allows for additional flexibility
for the concrete implementation. Once a choice of the
control Hamiltonians is made, the control action is deter-
mined by assigning a cycle time and a rule for switching
the Hamiltonians hs(t) during the cycle subintervals.

Viola and Knill [VK02] showed that decoupling can
be achieved by sequentially implementing generators so
that they follow a Eulerian cycle in Γ(G, S). An Eule-
rian cycle is defined as a cycle that uses each edge exactly
once. Because a Cayley graph is regular, it always has an
Eulerian cycle, whose length is necessarily N = |G| |S|
(see e.g. [Bol98, GR01] for the definition of these no-
tions). For our purposes, we use a slightly more general
definition: an Eulerian cycle with multiplicity λ is a cy-
cle that uses each edge exactly λ times. Clearly, such
an Eulerian cycle has necessarily length N = λ |G| |S|.
We will choose an Eulerian cycle to begin at the identity
element of G. Therefore, an Eulerian cycle can be de-
scribed as a list (s1, . . . , sN ) with entries from S. Each
entry identifies the edge via which we leave the vertex.

Decoupling according to an Eulerian cycle C :=
(s1, . . . , sN ) is defined by setting the cycle time Tc = N∆
and by choosing the control propagators Uc(t) as follows:

Uc

(

(j − 1)∆ + δ
)

= usj
(δ)Uc

(

(j − 1)∆
)

(12)

where δ ∈ [0, ∆) and usj
(δ) is defined in (10) and (11).

This decoupling prescription means that during the jth
subinterval one choses as a control Hamiltonian the one
that realizes the generator sj , i.e., the jth element of C.

The effective Hamiltonian H̄ under Eulerian decou-
pling is obtained by evaluating the time-average in (5)
with the control propagator being given by (12). The
resulting N terms can be partitioned in |S| families, each
corresponding to a fixed generator. Because for each s
the cycle C contains exactly λ s-labeled edges ending at
any given vertex g, each family leads to a sum over the
group elements as in (8).

For these reasons the quantum operation QC defined
by C can decomposed as

QC(X) = ΠG(FS(X)) (13)
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with the map FS implementing an average over both the
group generators and control sub-interval:

FS(X) =
1

|S|

∑

s∈S

1

∆

∫ ∆

0

us(τ)†(s)Xus(τ)dτ . (14)

The link between Eulerian decoupling and bang-bang de-
coupling by averaging over G is established in the follow-
ing theorem. Some additional compatibility between ΠG

and FS is necessary [VK02]. Let us repeat all the notions
before stating the theorem. Let G be a group that acts
via a faithful, unitary, projective representation g 7→ Ug

on Cd. The decoupling group algebra D of G is the C-
linear span of the matrices Ug.

Theorem 1 (Eulerian decoupling)
Let X be any operator acting on Cd. If the control Hamil-
tonians hs(t) are in the decoupling group algebra, i.e.,
hs(δ) ∈ D for all times δ ∈ [0, ∆] and all s ∈ S, then Eu-
lerian decoupling according an Eulerian cycle C as spec-
ified by the the rule in (12) has the same effect as aver-
aging over G as in (8), i.e,

QC(X) = ΠG(X) .

For the proof we refer the reader to [VK02]. Note that the
bang-bang limit is formally recovered by substituting the
map FS by the identity map. In the Eulerian approach,
at the expense of lengthening the control cycle, the same
G-symmetrization can be attained using only bounded-
strength controls. The maximum strengths achievable
in implementing the generators directly bounds the min-
imum attainable Tc, and therefore the accuracy of the
first-order approximation.

IV. EFFICIENT DECOUPLING SYSTEMS

In this section we consider a target systems that is
composed of n coupled qudits, i.e., its Hilbert space HS

is given by the tensor product HS = (Cd)
⊗n

. We say
that a family of decoupling schemes is efficient if the
number of control operations grows polynomially with
the number of qudits. So far there were only efficient de-
coupling schemes using bang-bang controls (see e.g. the
references given in the introduction). The schemes rely
on the special structure of the system Hamiltonians and
the couplings to the environment. It is assumed that
the system Hamiltonian is a so-called few body Hamilto-
nian. To define this precisely we need to introduce some
notions. For any operator A acting on Cd we denote by
A(k) the operator that acts as A on the kth qudit, i.e.,
A(k) = 1⊗ · · · ⊗ 1⊗ A ⊗ 1⊗ · · · ⊗ 1.

Let B := {σα | α = 1, . . . , d2} be an basis of for the
vector space Cd×d of matrices acting on Cd. We say
that an operator X acts on the qudits k1, . . . , kt with
1 ≤ k1 < . . . < kt ≤ n if it can be expressed as follows

X =
∑

α1,...,αt

xα1,...αt
σ(k1)

α · · ·σ
(kt)
β ,

for some xα1,...,αt
∈ C.

We assume that the system Hamiltonian is a t-body
Hamiltonian, i.e., it can be decomposed as

HS :=
∑

k1,...,kt

Hk1,...,kt
, (15)

where Hk1,...,kt
are traceless operators acting on qudits

k1, . . . , kt only. For t = 2 one also says that H is a
pair-interaction Hamiltonian. Furthermore, we assume
that the environment couples independently to t-tuples
of qudits, i.e., we have

HSE =
∑

k1,...,kt

Sk1,...,kt
⊗ Ek1,...,kt

(16)

where Sk1,...,kt
are traceless operators acting on qubits

k1, . . . , kt only and Ek1,...,kt
act on the Hilbert space HE

of the environment.
It will be convenient to use the following definition. Let

X be an arbitrary operator acting on (Cd)⊗t. We define
its embedding X(k1,...,kt) into (Cd)⊗n to be the operator

X(k1,...,kt) =
∑

α1,...,αt

xα1,...αt
σ(k1)

α1
· · ·σ(kt)

αt
, (17)

where X =
∑

α1,...,αt
xα1,...αt

σα1
⊗· · ·⊗σαt

is the expan-

sion of X in the product basis B⊗t.

A. Decoupling with bang-bang controls based on

orthogonal arrays

We assume that we can perform bang-bang controls on
each qudit individually. Formally, all control operations
are elements of some finite subset of the group U(d)⊗n,
where U(d) denotes the group of unitary matrices acting
on Cd. In the following we recall how orthogonal arrays
may be used to construct efficient decoupling schemes.
Orthogonal arrays appeared first in statistics where they
were used in the design of experiments for collecting sta-
tistical data systematically. We refer the reader to the
books [BJL99, CD96, HSS99] for applications and con-
structions of orthogonal arrays. Stollsteimer and Mahler
first used orthogonal arrays (or OAs for short) for the
construction of decoupling schemes and selective coupling
schemes [SM01] for qubit systems with pair-interactions.
This method was generalized to qudit systems with t-
local interactions in [WRJB02, RW04].

Definition 1 (Orthogonal array of strength t) Let
A be a finite alphabet and let n, N ∈ N. An n× N array
M with entries from A is an orthogonal array with |A|
levels, strength t, and multiplicity λ if and only if every
t × N sub-array of M contains each possible t-tuple of
elements in At precisely λ times as a column. We use
the notation OAλ(N, n, s, t) to denote a corresponding
orthogonal array. If λ, s, and t are understood we also
use the shorthand notation OA(N, n).
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An important special case arises if the strength t is two.
This means that each pair of elements of A occurs λ times
in the list ((akj , alj) | j = 1, . . .N) for 1 ≤ k < l ≤ n.
Most of the known construction actually yield arrays of
strength two [HSS99]. For many physical systems it will
be sufficient to study arrays of small strength since the
strength relates to the degree of the interactions, i. e.,
for pair-interaction Hamiltonians it is sufficient to con-
sider arrays of strength t = 2. For an example of such
orthogonal arrays see [Röt04, RW04].

The basic idea is to use an orthogonal array M with
parameters OA(N, n, d2, 2) over an alphabet A of size
d2. Here d denotes the dimension of the qudits. The ele-
ments of A are identified with the elements of the group
G := Zd ×Zd that acts irreducibly on Cd via the map in
(9). The columns (g1j , . . . , gnj)

T of M specify the con-
trol propagators Uc(t) over each of the N equally long
subintervals. A control cycle is defined by

Uc

(

(j − 1)∆ + τ
)

= Ug1j
⊗ Ug2j

⊗ · · · ⊗ Ugnj
, (18)

where τ ∈ [0, ∆), Tc = N∆ for some ∆ > 0, and j =
1, . . . , N .

The following theorem shows that the prescription in
(18) allows to decouple few body Hamiltonians and cou-
plings with the environment. Let G be an arbitrary finite
group. We denote by G×t the direct product G×· · ·×G
having t components.

Theorem 2 (Decoupling with OAs)
Let G := Zd ×Zd and g 7→ Ug be the irreducible, unitary,
projective representation as in (9). Let M = (gkj) be an
OA(n, N) be an orthogonal array of strength t over the
group G. Let ΠM denote the control action that corre-
sponds to (18). Then we have

ΠM (X(k1,...,kt)) = 0 (19)

for an arbitrary traceless operator acting on (Cd)⊗t and
any t-tuple (k1, . . . , kt) with 1 ≤ k1 < . . . < kt ≤ n.

Proof. The idea is to reduce the problem for each t-
tuple (k1, . . . , kt) to the case in (8) by using the special
structure of the operator X(k1,...,kt). We have

ΠM (X(k1,...,kt)) =
1

N

N
∑

j=1

(

Ug1j
⊗ Ug2j

⊗ · · · ⊗ Ugnj

)†
X(k1,...,kt)

(

Ug1j
⊗ Ug2j

⊗ · · · ⊗ Ugnj

)

=





1

N

N
∑

j=1

(

Ugk1,j
⊗ Ugk2,j

⊗ · · · ⊗ Ugkn,j

)†
X

(

Ugk1,j
⊗ Ugk2,j

⊗ · · · ⊗ Ugkn,j

)





(k1,...,kt)

=





λ

N

∑

(h1,...,ht)∈G×t

(

Uh1
⊗ Uh2

⊗ · · · ⊗ Uht

)†
X

(

Uh1
⊗ Uh2

⊗ · · · ⊗ Uht

)





(k1,...,kt)

= [ΠG×t(X)](k1,...,kt) = 0(k1,...,kt) = 0 . (20)

The first equality is because X(k1,...,kt) acts on the qudits
k1, . . . , kt only. Note that the representation of G×t to
U(d)⊗t given by (h1, . . . , ht) 7→ Uh1

⊗ · · · ⊗ Uht
is irre-

ducible. Since M is an orthogonal array of strength t the
list ((gk1,j , . . . , gkt,j))

N
j=1 contains every element of G×t

exactly λ times. Therefore, we average over the group
G×t acting via an irreducible representation as in (8).
This proves eq. (20). 2

It is clear that we can switch off all Hamiltonians of
the form in (15) and all couplings with an environment
of the form in (16) with control actions specified by the
above theorem. This is because all operators Hk1,...,kt

and Sk1,...,kt
have the form X(k1,...,kt) for some traceless

operator X acting on (Cd)⊗t.

B. Decoupling with bounded strength controls

based on Eulerian orthogonal arrays

Finally, we show how to combine the ideas of Eule-
rian decoupling and orthogonal arrays. This is done by
introducing the concept of Eulerian orthogonal arrays.

Definition 2 (Eulerian orthogonal array)
A n×N -matrix M = (gkj) with entries from the group G
is said to be an Eulerian orthogonal array of strength t iff
for all t-tuples (k1, k2, . . . , kt) with 1 ≤ k1 < . . . < kt ≤ n
there is a generating set Sk1,k2,...,kt

of G×t such that the
list of group elements

(

(gk1,j , gk2,j , . . . , gks,j

)N

j=1
(21)

defines an Eulerian cycle in the Cayley graph
Γ(G×t, Sk1,k2,...,kt

).
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Note that the above conditions automatically implies
that M is a (usual) orthogonal array of strength t.

We assume that we have the ability to implement the
group elements g ∈ G, i.e., to implement the unitaries
Ug on the individual qudits by the application of control
Hamiltonians hg(t) over ∆ as in (10) and (11). This
means that we have the ability to switch on the control
Hamiltonians hg(t) on any qudit, i.e., 1⊗· · ·⊗1⊗hg(t)⊗
1⊗ · · · ⊗ 1.

We define decoupling according to an Eulerian orthog-
onal array M = (gkj) by setting the cycle time Tc = N∆
and by assigning the control propagators as follows:

Uc

(

(j − 1)∆ + δ
)

=
(

us1j
(δ) ⊗ · · · ⊗ usnj

(δ)
)

Uc

(

(j − 1)∆
)

(22)

where δ ∈ [0, ∆) and skj = g−1
kj gk,j+1 for j = 1, . . . , N−1

and skN = g−1
kNgk1. The tuples (sk1,j , . . . , skt,j) are the

edges in the Eulerian cycle defined by the rows k1, . . . , kt

of M .

Theorem 3 (Decoupling with Eulerian OAs)
Let G := Zd ×Zd and g 7→ Ug be the irreducible, unitary,
projective representation in (9). Let M = (gkj) be an Eu-
lerian orthogonal array over G of size n×N and strength
t. Let QM denote the control action that results from the
control propagator defined in (22). Then we have

QM (X(k1,...,kt)) = 0 (23)

for an arbitrary traceless operator X acting on (Cd)⊗n

and any t-tuple (k1, . . . , kt) with 1 ≤ k1 < . . . < kn ≤ n.

Proof. Again the idea is to reduce the problem for each
t-tuple (k1, . . . , kt) to the case of Theorem 1 by using
the special structure of the operator X(k1,...,kt). Let us
denote by Ck1,...,kt

the Eulerian cycle in the Cayley graph
Γ(G×t, Sk1,...,kt

) that is define by the rows k1, . . . , kt of
M . Then we have

QM (X(k1,...,kt)) =
[

QCk1,...,kt
(X)

](k1,...,kt)
(24)

=
[

ΠG×t

(

FSk1,...,kt
(X)

)](k1,...,kt)

= 0(k1,...,kt) = 0 .

Eq. (24) is due to the fact that X(k1,...,kt) acts on qu-
dits k1, . . . , kt only. The remaining equalities follow from
Theorem 1 because all its conditions are satisfied. 2

Again it is clear that we can switch off all Hamiltonians
of the form in (15) and all couplings with an environment
of the form in (16) with control actions specified by the
above theorem.

V. EULERIAN OAS FROM LINEAR ERROR

CORRECTING CODES

We will construct Eulerian orthogonal arrays using lin-
ear error correcting codes. Let us briefly repeat some

basis facts about linear error correcting codes and their
relationship to orthogonal arrays.

A linear code over the finite field Fq is a k-dimensional
subspace of the vector space Fn

q . We consider finite

fields of q = d2 only. In this case the additive group
of the finite field Fq is isomorphic to Zd × Zd; we will
again use the irreducible representation in (9). The
space Fn

q is endowed with a metric called Hamming dis-
tance. It is defined as follows: for x = (x1, . . . , xn) ∈ F

n
q

we have that wt(x) := |{i ∈ {1, . . . , n} : xi 6= 0}|.
The minimum distance of a linear code C is defined by
d = dmin := min{wt(c) : c ∈ C, c 6= o}, where o denotes
the zero vector. In this situation we say shortly that C
is an [n, k, d]q code. We need the fact that a [n, k]q linear
code can be described by a generator matrix G of size
n × k with entries from Fq. The matrix G defines the
embedding from Fk

q to Fn
q ; the code words c ∈ C are the

images of the vectors m ∈ Fk
q , i.e., c = Gm. We need one

more definition which is the dual code C⊥ of C defined
by C⊥ := {x ∈ Fn

q : x · y = 0 for all y ∈ C}; the dot

product x · y is given by
∑n

i=1 xiyi. In the following we
refer to the minimum distance d⊥ of the dual code as the
dual distance.

The following theorem [HSS99, Theorem 4.6] estab-
lishes a close relationship between orthogonal arrays and
error-correcting codes. This theorem was also used in
[Röt04, RW04].

Theorem 4 (OAs from linear codes)
Let C be a linear [n, k, d]q code over Fq with dual distance
d⊥. Arrange the codewords of C into the columns of a

matrix A ∈ Fn×qk

q . Then A is an OA(qk, n, q, d⊥ − 1).

Now we show how to modify the above construction in
order to obtain Eulerian orthogonal arrays.

Theorem 5 (Eulerian OAs from linear codes)
Let C be a [n, k]q-code with dual distance d⊥ and G be
a generator matrix for C. Let C := (m0, . . . , mN−1)
be an Eulerian cycle in the Cayley graph Γ(V, S) with
multiplicity 1, where the group is V := Fk

q and the

generating set is the group itself, i. e., S := F
k
q . The

length of such an Eulerian cycle is necessarily N = q2k.
Set t := d⊥ − 1. Then the n × N matrix M whose
columns are defined to be Gmj for j = 0, . . . , N − 1
is an Eulerian orthogonal array over Fq of strength t.
Furthermore, we have Sk1,...,kt

= G×t for all t-tuples
(k1, . . . , kt) with 1 ≤ k1 < . . . < kt ≤ n.

Proof. Since C = (m0, . . . , mN−1) is an Eulerian cycle
all elements of V = Fk

q appear exactly qk (corresponding

to the size |S| = qk of the generating set S) times in
C. Therefore, the column vector Gm appears exactly qk

times in M for all m ∈ Fk
q . It now follows from Theorem 4

that M is an orthogonal array; its multiplicity is just qk

times the multiplicity of an OA constructed based on
Theorem 4.
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Let m be an arbitrary element of V = Fk
q and Im :=

{j | mj = m}. Then every element of S = F
k
q appears

exactly once in the list (mj+1 − mj | j ∈ Im) because
C is an Eulerian cycle in Γ(V, S) with multiplicity one
(the addition is done modulo N). Consequently, the list
of transitions that occur in M from all columns of the
form Gm, i.e., (Gmj+1 − Gmj | j ∈ Im) is independent
of m and is equal (up to reordering the columns) to the
orthogonal array M ′ := (Ge | e ∈ Fk

q); it follows from
Theorem 4 that M ′ is an orthogonal array. This proves
that M is Eulerian and also that Sk1,...,kt

= G×t for all
t-tuples since M ′ is an orthogonal array of strength t. 2

Note that our construction is closely related to
Rötteler’s construction [Röt04]. In that paper Hamil-
tonian cycles in the Cayley graph Γ(Fk

q , S) are used,
where the generating set is S given by the k coordinate
vectors. The motivation behind this construction is to re-
duce the number of different control pulses in bang-bang
decoupling.

Let us now explain how to construct decoupling
schemes for general t-body Hamiltonians acting on n qu-
dits with bounded controls based on Theorem 5. To
obtain a decoupling scheme using a minimal number of
pulses we have to find a code [n, k]q such that k is mini-
mal and the dual distance d⊥ is at least t + 1. This may
be formulated in terms of the dual code which has pa-
rameters C⊥ = [n, n− k, d⊥]q. The dual code C⊥ should
contain the maximally possible number of code words for
given n and d⊥. This question is one of the central opti-
mization problems in the theory of error correcting codes.
To find such optimal or best known codes one could e.g.
use the computer algebra system MAGMA [BCP97] that
contains a table of best known linear codes (i.e., with
the maximal number of code words) for given length and
minimal distance.

We now consider a quantum system consisting of n
qubits which are governed by a pair-interaction Hamil-
tonian. For such a system we can construct decou-
pling schemes using N pulses from an orthogonal array
OA(N, n,4, 2). Hence, in order to apply Theorem 4 and

5 we have to find a code C of linear codes over F4 for
which the parameters are [n, k, d] and for which the dual
distance is at least 3. This can be done with the help of
Hamming codes [Röt04, RW04]. For every m ∈ N there
is an orthogonal array OA(4m, (4m − 1)/3, 4, 2). The
columns of this OA are codewords of the dual code of
a Hamming code. The corresponding Eulerian orthogo-
nal array has parameters OA(16m, (4m − 1)/3, 4, 2).

To obtain a decoupling scheme for a quantum system
consisting of n qubits, where n is an arbitrary natural
number, i. e., not necessarily of the form n = (4m − 1)/3
we proceed as follows: first let m ∈ N be the unique in-
teger such that n ≤ 4m−1

3 ≤ 4n. Then construct the or-
thogonal array with parameters OA(4m, (4m − 1)/3, 4, 2)
for bang-bang controls and the Eulerian orthogonal array
with parameters OA(16m, (4m − 1)/3, 4, 2) for bounded-
strength controls, respectively. These results shows that
the complexity of decoupling for general pair-interactions
Hamiltonians acting on n qubits scales at most linearly
in n for bang-bang controls and at most quadratically in
n for bounded-strength controls, respectively.

Conclusions and Discussions.— We have shown that
it is possible to construct decoupling schemes using
bounded-strength controls for composite multipartite qu-
dit systems with the help of Eulerian orthogonal arrays.
Our concept of Eulerian orthogonal arrays merges the de-
sirable properties of usual orthogonal arrays (that were
use to construct efficient decoupling schemes with bang-
bang controls) and Eulerian cycles that are at the heart
of Viola and Knill’s Eulerian decoupling method. We
have shown how to construct efficient Eulerian orthog-
onal arrays based on linear error correcting codes. It
would be interesting to find new construction of Eulerian
orthogonal arrays that might yield decoupling schemes
with a smaller number of pulses.
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